GACETA MÉDICA DE MÉXICO

REVIEW ARTICLE

Gac Med Mex. 2016;152:82-90

Isoforms of the human histamine H₃ receptor: Generation, expression in the central nervous system and functional implications

Ana Maricela García-Gálvez and José Antonio Arias-Montaño* Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados (Cinvestav), Mexico City, Mexico

Abstract

Histamine plays a significant role as a neuromodulator in the human central nervous system. Histamine-releasing neurons are exclusively located in the tuberomammillary nucleus of the hypothalamus, project to all major areas of the brain, and participate in functions such as the regulation of sleep/wakefulness, locomotor activity, feeding and drinking, analgesia, learning, and memory. The functional effects of histamine are exerted through the activation of four G protein-coupled receptors (H1, H2, H3 and H4), and in the central nervous system the first three receptors are widely expressed. The H3 receptor (H3R) is found exclusively in neuronal cells, where it functions as auto- and hetero-receptor. One remarkable characteristic of the H3R is the existence of isoforms, generated by alternative splicing of the messenger RNA. For the human H3R, 20 isoforms have been reported; although a significant number lack those regions required for agonist binding or receptor signaling, at least five isoforms appear functional upon heterologous expression. In this work we review the evidence for the generation of human H3R isoforms, their expression, and the available information regarding the functionality of such receptors. (Gac Med Mex. 2016;152:82-90)

PERMANYER

Corresponding author: José Antonio Arias-Montaño, jaarias@fisio.cinvestav.mx

KEY WORDS: Histamine. H₃ receptor. Isoform. mRNA. Alternative splicing. Central nervous system.

ntroduction

Histamine participates in numerous functions in the human body, such as allergic responses, acid gastric secretion, synaptic transmission modulation and immune response, by activation of 4 calcitonin gene related peptide (GPCR) subtypes¹⁻⁵: H_1 , H_2 , H_3 and H_4 .

In the central nervous system (CNS), there is a group of histaminergic neurons (64,000 cells in total), located

Correspondence:

*José Antonio Arias-Montaño Departamento de Fisiología, Biofísica y Neurociencias Cinvestav Apdo. postal 14-740 C.P. 07000, Ciudad de México, México E-mail: jaarias@fisio.cinvestav.mx in the tuberomammilar nucleus of the posterior hypothalamus, which send projections to the brain, the cerebellum and the spinal chord^{6,7}, with the highest innervation density in the cerebral cortex, basal ganglia, the thalamus, the hypothalamus and the hippocampus^{7,8}.

Histamine acts as a neuromodulator in the CNS, facilitating or inhibiting neuronal activity⁹, and participates in processes such as the sleep-wake cycle, motor activity, water and food ingestion, nociception and memory and learning. Three of the 4 histamine receptors,

Modified version date of reception: 06-06-2015 Date of acceptance: 10-06-2015 H_1 , H_2 and H_3 , are widely expressed in the CNS^{9,10}; and the H_3 receptor (H_3R) is exclusively expressed in neuronal cells, both at the CNS and the peripheral nervous system. In the CNS, H_3R is found in the histaminergic neurons themselves as an autoreceptor and in neurons that release other neurotransmitters (heteroreceptor). An important feature of H_3R is the existence of isoforms, generated by precursor mRNA alternative splicing. In the case of hH_3R , 20 isoforms have been reported and, although some lack the necessary regions for agonist-binding or the domains involved in signaling, at least 5 are functional when expressed on heterologous systems.

In this work, the structure and function of hH_3R are briefly described, and subsequently, available information on the described isoforms is reviewed with regard to their structure, their expression in the CNS, their pharmacological and functional features and their possible relationship with specific brain functions.

H₃R

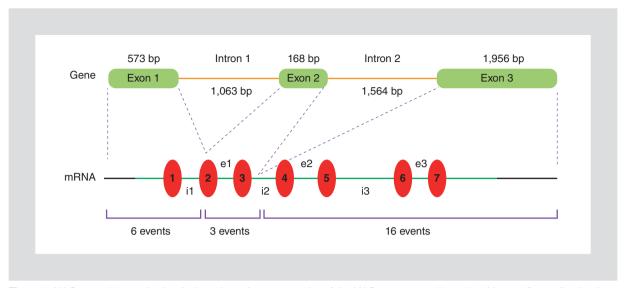
 H_3R was pharmacologically identified in 1983 as the autoreceptor responsible for histamine synthesis and release negative feedback^{11,12}. As a heteroreceptor, H_3R modulates the release of noradrenalin, serotonin, dopamine, glutamic acid, gamma-aminobutyric acid (GABA) and neuropeptides such as substance P and CGRP^{9,13}.

There are evidences of H_3R post-synaptic localization in certain regions of the brain, such as the neostriatum, cerebral cortex, the hippocampus and the nucleus accumbens^{14,15}. In striatal GABA-ergic neurons, post-synaptic H_3Rs form heterodimers with dopamine receptors D_1 and D_2 by modulating their signaling, with relevant implications for locomotor activity¹⁶⁻¹⁹. In the primary culture of cerebral cortex neurons of the mouse, H_3R activation increases the expression of anti-apoptotic proteins and partially protects the cells from damage induced by serum deprivation or by activation of glutamate receptors of the N-methyl-D-aspartate (NMDA) type²⁰.

Structural make-up

 H_3R is a seven-transmembrane domain (TM) protein, which originates three extracellular and three intracellular loops of different sizes. The third intracellular loop (i3) and the terminal carboxyl region are important for the coupling of the receptor to G-proteins and the ensuing intracellular signalling²¹⁻²³.

Intracellular signaling


 $\rm H_{3}R$ is coupled to $\rm Ga_{i/o}$ proteins, which trigger several intracellular signaling pathways, including the following:

- Cyclic adenosine 3'-5'-monophosphate (cAMP) formation inhibition.
- Phospholipase A₂ activation.
- Voltage-activated Ca²⁺ channels (N and P/Q) opening inhibition, which underlies the inhibitory effect on neurotransmitter release.
- Phosphatidylinositol 3-kinase (PI3K) pathway activation.
- Activation of mitogen-activated protein kinases (MAPK).
- Activation of phospholipase C, leading to Ca²⁺ mobilization from intracellular storages.
- Na+/H+ exchange inhibition.
- Activation of inward rectifier K⁺ channels²⁴⁻²⁶.

Generation of H₃R isoforms by mRNA alternative splicing

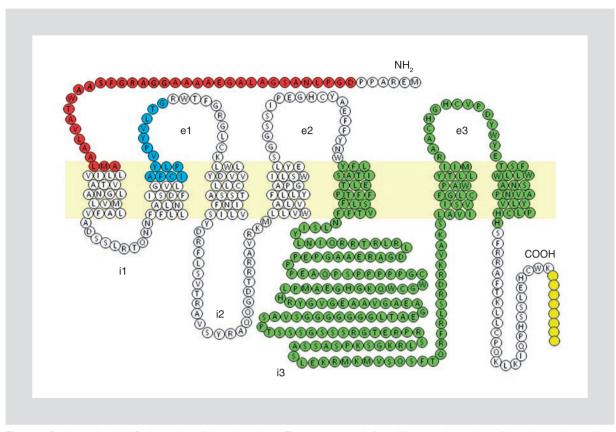
A single gene can potentially codify for several proteins by mRNA alternative splicing. In this process, exons or introns can be excluded from precursor mRNA, thus generating different variants of mature mRNA. The end-result is the synthesis of several proteins from a same gene, with different amino acid sequence and, therefore, different potentials in their structural and functional properties. mRNA alternative splicing can also lead to the presence of one premature stop codon, resulting in a smaller-size protein.

The existence of H₃R isoforms was initially suggested in several mammal species (guinea pig, rat, mouse, monkey and human) due to pharmacological heterogeneity of H₃Rs of different cerebral areas, as shown by radioligand-binding and functional assays²⁷⁻³³. In 1999, complementary DNA (cDNA) cloning by Lovenberg et al. allowed for molecular study of the receptor, which showed that the corresponding gene is found on the long arm of chromosome 20 (20q13.32-20q13.33) and that cDNA codifies for a 445-amino acid (aa) protein³. Nucleotide sequence analysis shows that the gene contains 3 introns (Fig. 1) localized at the same position in the rodents' gene and that the regions contiquous to sequence-deletion and isoform-generation sites contain alternative splicing donor and acceptor sites, also present in homologous genes of the mouse and the guinea pig^{27,29,34,35}.

Figure 1. hH_3R genomic organization. In the schematic representation of the hH_3R gene, exons (green) and introns (brown lines), whose extension is expressed in base pairs (bp), are shown. In the schematic representation of the hH_3R mARN, the codifying region (green line) is shown with the TM domains depicted as red ovals, and the extra- and intracellular loops are indicated. The black line indicates the non-transduced region. The mRNA regions where alternative splicing events take place and their number are indicated by the brackets.

The reverse transcription polymerase chain reaction (RT-PCR) analysis has so far enabled identifying 20 hH₃R isoforms, with differences in the aminoand carboxyl-termini length, loss of amino acids in the third intracellular loop (i3) and sequence deletions on TM regions (Fig. 2). Of them, eight isoforms (hH₃R₄₄₅, hH₃R₄₅₃, hH₃R₄₁₅, hH₃R₄₁₃, hH₃R₄₀₉, hH₃R₃₇₃, hH₃R₄₅₅ and hH₃R₃₂₉) are able to bind ligands when expressed in heterologous systems. These isoforms are homologous in their TM regions, and differ in the amino- and carboxyl-termini regions and/or i3 loop. The other 12 isoforms do not bind ligands and, therefore, would render non-functional, although in several cases their activity has not been studied in detail.

 $hH_{3}R$ isoforms are generated by deletion and/or retention mechanisms of a pseudo-intron, which in the human and the rat occur primarily at the mRNA sequence corresponding to the gene's exon $3^{28,35}$. A similar mechanism has been reported for other receptors also coupled to Ga_{i/o} proteins, such as dopamine D₂ and D₃, type B GABA and type μ opioid receptors³⁶⁻³⁹.


hH₃R isoforms

The hH₃R alternative splicing events occur in four mRNA regions, three of them located at regions

corresponding to amino acids 7-42, 85-98 and 197-417 of the protein (Fig. 2), whereas in the fourth region, the events generate isoforms with 8 additional aa on the carbox-yl-terminus extreme (Fig. 2)⁴⁰.

Using human thalamus mRNA, Cogé et al., in 2001⁴¹, cloned the 445 aa hH₃R (hH₃R₄₄₅) and five different isoforms of 431, 415, 365, 329 and 326 aa, which show amino acid elimination on the TM2 region (hH3R431) o the i3 loop $(hH_3R_{415}, hH_3R_{365}, hH_3R_{329}$ and $hH_3R_{326})$. That same year, Tardivel-Lacombe et al.³⁵ confirmed the presence of the hH3R445 isoform in the human brain and detected another receptor with deletion of a 32 aa fragment (aa 274-305) on the i3 loop (hH_3R_{413}) (Table 1). Also in 2001, Tsui described two additional isoforms of the receptor (hH₃R₃₅₁ and hH₃R₃₄₀) (Table 1)⁴², generated by the combination of alternative splicing events, consisting in the absence of amino acids 85-98 or 393-417, in addition to the i3 loop alternative splicing event that gives rise to the 365 aa receptor by eliminating 240 nucleotides⁴¹.

Nakamura et al., in 2002^{44} , identified yet another hH₃R isoform, with 8 additional aa at the carboxyl terminus extreme of the receptor (hH₃R₄₅₃) (Table 1), generated by the presence of an alternative splicing donor site in the sequence of the transduction stop codon and of a new alternative splicing acceptor site located at the original cDNA non- extreme 3' codifying region.

Figure 2. Regions where hH_3R alternative splicing takes place. The events occur in four different regions, three of them located at positions corresponding to amino acids 7-42 (red), 85-98 (blue) and 197-417 (green). In the fourth region, the events generate isoforms consisting of 8 additional aa at the carboxyl-terminus extreme (yellow).

Combined alternative splicing events have been reported that originate four additional hH₃R isoforms⁴⁵:

- hH₃R₃₀₁, generated by deletion of 144 aa with loss of large part of i3 loop, as well as of regions TM6 and TM7 of the protein.
- hH₃R₃₇₃, with the elimination of 80 aa in i3 loop reported for isoform hH₃R₃₆₅⁴¹, and a second alternative splicing site located after the stop codon in the codifying sequence, which removes the codon and entails 8 additional aa at the carboxyl-terminus region.
- hH₃R₃₀₉, with deletion of 408 nucleotides, originating a receptor without the TM4 and TM5 regions and part of i3 loop.
- hH₃R₂₂₁, with an identical splicing event to that of hH₃R₃₀₁, as well as the event observed for the hH₃R₃₇₃ isoform i3 loop, which originates a receptor with only 5 TM.

Gallagher and Yates, in 2007⁴⁶, described 6 more isoforms obtained from human brain tissue mRNA. One of them, hH_3R_{4nq} , consists in the loss of 36 aa (aa 7-42)

of hH₃R₄₄₅ amino-terminus region of. The other isoforms are generated by the previously reported alternative splicing events combination. A 329 aa isoform, hH₃R₃₂₉, is generated by the loss of amino acids 7-42 at the amino-terminus region and 80 aa in the i3 loop, the latter described for isoform hH₃R₃₆₅⁴¹. Another isoform, hH₃R₃₉₅, involves the aforementioned elimination of amino acids 7-42 and an additional loss of 14 aa at the TM2 region, important for the ligand to bind to the receptor and, therefore, for its activation. The three last reported isoforms show variable amino acid elimination at the i3 loop (30, 116 and 119 aa), in addition to the absence of 36 aa at the amino-terminus extreme of the protein, thus generating the hH₃R₃₇₉, hH₃R₂₉₃ and hH₃R₂₉₀ receptors (Table 1).

hH₃R isoforms expression in the CNS

The analysis performed by Cogé et al.⁴¹ on the expression in human CNS of mRNA of the 6 isoforms cloned by this group (hH_3R_{445} , hH_3R_{431} , hH_3R_{415} , hH_3R_{45} , hH_3R_{431} , hH_3R_{415} , hH_3R_{45} ,

Isoform	Expression in the brain	Signaling	
H ₃ (445)	Thalamus, neostriatum, cortex, cerebellum. amygdala, substantia nigra, hippocampus, hypothalamus, corpus callosum, spinal chord	↓ cAMP, ↑ MAPK, [³⁵ S]-GTPgS binding, ↑ [Ca ²⁺]i	
H ₃ (431)	Amygdala, cerebellum, neostriatum, thalamus, prefrontal cortex	Not determined	
H ₃ (415)	Neostriatum, thalamus, cerebellum, amygdala	↑ [Ca²+]i	
H ₃ (365)	Cerebellum, thalamus, hypothalamus, neostriatum, substantia nigra, hippocampus, amygdala, prefrontal cortex	↑ [Ca ²⁺]i, \downarrow cAMP, [³⁵ S]-GTPgS binding	
H ₃ (329a)*	Substantia nigra, amygdala, cortex, hypothalamus	Non-functional	
H ₃ (326)	Substantia nigra, prefrontal cortex, amygdala, hypothalamus	Not determined	
H ₃ (413)	Neostriatum, amygdala	Not determined	
H ₃ (453)	Not determined	↓ cAMP	
H ₃ (301)	Not determined	Non-functional	
H ₃ (373)	Hippocampus, substantia nigra, amygdala, hypothalamus	↓ cAMP	
H ₃ (309)	Not determined	Non-functional	
H ₃ (221)	Not determined	Not determined	
H ₃ (409)	Not determined	Not determined	
H ₃ (329b)*	Not determined	Not determined	
H ₃ (395)	Not determined	Not determined	
H ₃ (379)	Not determined	Not determined	
H ₃ (293)	Not determined	Not determined	
H ₃ (290)	Not determined	Not determined	
H ₃ (351)	Not determined	Not determined	
H ₃ (340)	Not determined	Not determined	

Table 1. hH ₂ R isoforms ex	pression in hum	an brain and signaling	a in heteroloaous svsi	tems

*Isoforms hH₃R_{329a} and hH₃R_{329b} have the same amino acid number, but differ on the nucleotide elimination region.

↑: increase; ↓: decrease; [Ca2+]i: calcium intracellular concentration.

Adapted from Lovenberg et al.³, Bongers et al.³², Tardivel-lacombe et al.³⁵, Bongers et al.⁴⁰, Cogé et al.⁴¹, Tsui⁴², Nakamura et al.⁴³, Wiedermann et al.⁴⁴, Wellendorph et al.⁴⁵ and Gallagher et al.⁴⁶.

hH₃R₃₂₉ and hH₃R₃₂₆) showed that isoform hH₃R₄₄₅ was the most abundant and, at the same time, high expression of isoforms hH₃R₄₁₅ and hH₃R₃₆₅ was detected at the thalamus, caudate nucleus and cerebellum, where isoforms hH₃R₃₂₉ and hH₃R₃₂₆ levels were very low. In contrast, isoforms hH₃R₃₂₉ and hH₃R₃₂₉ and hH₃R₃₂₆ mRNA expression was high at the amygdala, substantia nigra, cortex and hypothalamus, with no evidence of expression at the hippocampus (Table 1). In the study by Wellendorph et al. (2002)⁴⁵, hH₃R₄₄₅ mRNA was found in the hippocampus, basal ganglia, substantia nigra, amygdala and hypothalamus, but not in the thalamus or hindbrain. The same pattern was observed for hH₃R₃₆₅/hH₃R₃₇₃ receptors mRNA, with the

exception that signaling at the hypothalamus was higher for this mRNA.

Esbenshade et al (2006)³¹ reported variable hH₃R₄₄₅, hH₃R₄₁₃, hH₃R₃₆₅ and hH₃R₃₂₉ isoforms mRNA levels in human brain tissue; isoforms hH₃R₄₄₅ and hH₃R₃₆₅ were the most abundant, with the highest levels in the hypothalamus and cerebellum, and similar expression on the amygdala, caudate nucleus, substantia nigra, thalamus and cerebellum. Isoforms hH₃R₄₁₃ and hH₃R₃₂₉ were much less abundant; isoform hH₃R₄₁₃ was detected only in the caudate nucleus and the amygdala, and receptor hH₃R₃₂₉, only in the amygdala.

Bongers et al.³² compared the 445 and 365-aa isoforms mRNA expression in the human cerebellum and reported the following: high expression of hH₃R₄₄₅ in the cerebellum and caudate nucleus, moderate expression in the hypothalamus and thalamus, low expression in prefrontal cortex, amygdala, hippocampus, corpus callosum and substantia nigra, and very low expression in the spinal cord. Isoform hH₃R₃₆₅ was detected in the same regions with higher expression (1.4-fold) than that of hH₃R₄₄₅, except for the caudate nucleus, corpus callosum and spinal cord, areas where isoform hH₃R₄₄₅ expression was 3.5, 2.8 and 2.2-fold with regard to that for receptor hH₃R₃₆₅.

hH₃R isoforms pharmacological and functional characteristics

To date, H₃R isoforms pharmacological and functional characteristics have been only evaluated by means of their expression on cell lines.

Expression in NIH-3T3 cells together with reporter gene assays involving cAMP formation inhibition, showed that hH_3R_{445} , hH_3R_{365} and hH_3R_{373} receptors were functional, whereas isoforms hH_3R_{301} (lacking most part of i3 loop, as well as TM6 and TM7 regions) and hH_3R_{309} (lacking TM4 and TM5 regions, and part of the i3 loop) were not⁴⁵. Isoform hH_3R_{221} functionality was not analyzed, with only 5 TM regions and loss of 80 aa at the i3 loop. In the same study, the response to different agonists showed that they were 5-27-fold more potent to activate isoform hH_3R_{365} than isoform hH_3R_{445} . By contrast, selective antagonists were 5-6-fold less potent for isoform hH_3R_{365} than for isoform hH_3R_{445} .

The isoform with 8 additional aa at the carboxyl-terminus extreme of the receptor (hH_3R_{453}) showed ligand binding when expressed in COS-7 cells, and in HEK-293 cells, this receptor inhibits cAMP formation when activated by histamine agonists, N-a-methylhistamine (NMHA), R- α -methylhistamine (RAMH) and imetit, with a mean effective concentration (EC₅₀) of 19, 0.26, 0.71 and 1,7 nM, respectively⁴³.

In rat glioma C6 cells, isoforms hH_3R_{445} , hH_3R_{415} hH_3R_{365} and hH_3R_{329} showed similar affinity for the [³H]-NMHA marked agonist, with dissociation constants (Kd) of 0.50, 1.0, 0.25 and 0.63 nM, respectively³¹. In the same work, the calcium mobilization analysis in HEK cells transfected with Ga_{qi5}, coupled to phospholipase C stimulation and whose last 5 aa correspond to the sequence of Ga_{1/o} proteins, which enables for them to be activated by H₃R, showed functional responses to the RAMH agonist with similar potency for isoforms hH₃R₄₄₅, hH₃R₄₁₅ and hH₃R₃₆₅ (EC₅₀ of 7.9, 5.0 and 7.9 nM, respectively), whereas isoform hH₃R₃₂₉ did not render functional. With regard to maximum response, isoform hH₃R₄₁₅ effect was 60% of hH₃R₄₄₅ response, and isoform hH₃R₃₆₅ response was lower than 10%.

In 2007, Bongers et al.³² reported a detailed comparison of isoforms hH_3R_{445} and hH_3R_{365} pharmacological and functional characteristics. The analysis of [³H]-NMHA binding to isoforms expressed in C6 glioma cells inhibition by 27 ligands showed higher affinity of hH₃R₃₆₅ (3.4-fold on average) for agonists such as histamine itself, immepip and imetit. This difference was even larger (55-fold on average) when a second radioligand, [1251]-iodophenpropit, was used. In contrast, isoform hH₃R₄₄₅ showed higher affinity for H₃R antagonists/reverse agonists, such as ciproxifan, clobenpropit and A-331440. H3R can have spontaneous or constitutive activity47,48, defined as receptor activation in the absence of agonists. This characteristic results in tonic intracellular signaling, and in the rat's CNS, H₂Rs constitutive activity inhibits histamine synthesis and release in a tonic manner, as well as histaminergic neurons excitability^{7,48-52}. Constitutive activity can be reduced o abolished by drugs that bind to the receptor and stabilize it at a state of lower or no activity (inverse agonists).

In the study by Bongers et al.³² isoforms hH_3R_{445} and hH₃R₃₆₅ functionality was analyzed with [³⁵S]-GT-PyS binding assays, indicative of G-proteins activation by the receptor (in HEK cells) and cAMP formation inhibition (in C6 cells). For [35S]-GTPyS binding, agonists were more potent (4.6-fold on average) with isoform hH₃R₃₆₅. However, maximum effect was higher with isoform $hH_{3}R_{445}$ (220 and 120% from baseline binding for isoforms $hH_{3}R_{445}$ and $hH_{3}R_{365}$, respectively). In this assay, reverse agonists were more potent (2.6-fold) with isoform hH₃R₄₄₅. To inhibit forskolin-induced cAMP formation, agonists were more potent (35-fold on average) with isoform hH3R365, but more efficacious with receptor hH3R445 (80% inhibition compared with 44% for isoform hH₃R₃₆₅). Conversely, reverse agonists were more potent (14-fold) with isoform hH₃R₄₄₅, but efficacy was higher with isoform hH₃R₃₆₅, indicating higher constitutive activity of the shorter isoform. The application of the agonist-receptor-protein G interaction ternary cubic model indicated that isoform hH₃R₃₆₅ higher spontaneous activity would also explain the higher potency and affinity of agonists with this isoform, as well as the lower potency and affinity of reverse agonists.

hH₃R isoforms expression possible functional implications

Histamine participates in the regulation of different cerebral functions. Differential expression of H₂R isoforms in human and rat CNS (Table 1) suggests the possibility of isoforms selective actions in the regulation of these functions. For example, in rodents, primates and humans, there is isoform hH_3R_{445} abundant expression at limbic regions such as the hippocampus, the amygdala and the basal forebrain, suggesting an involvement of this isoform in cognitive and affective states modulation^{3,33,34,45}. This isoform is also predominant in the thalamus and the cortex, both cerebral regions that are part of the cortex \rightarrow basal ganglia \rightarrow thalamus \rightarrow cortex circuit, which is critical to motor behavior control²⁶. Isoform hH₃R₄₄₅ significant expression at the cortex and hippocampus, both important regions for cognitive functions, suggests its participation in these processes as well.

Bongers et al.³² showed that isoform hH₃R₃₆₅ is abundantly expressed in the thalamus and the cerebellum, which suggests its involvement in the modulation of synaptic information originating in the basal ganglia circuit and, therefore, in the regulation of motor behavior, e.g., by inhibiting glutamate release⁵³ from thalamocortical and thalamostriatal terminals⁵³. In comparison with the 445-aa isoform, hH₃R₃₆₅ is abundantly expressed at the hypothalamus, where histaminergic neurons are located and, therefore, this isoform could be the main executor of the autoreceptor function and modulate the synthesis and release of histamine itself, as well as the frequency of histaminergic neurons triggering. In this sense, the 413 aa receptor in the rat appears to play an autoreceptor role⁵⁴. Isoform hH₃R₃₆₅ has high constitutive activity³² and, therefore, it could be also responsible for the tonic inhibition observed in the triggering frequency of histaminergic neurons, where tioperamide, an antagonist/reverse agonist, increases this frequency48,52.

Isoforms hH_3R_{445} and hH_3R_{365} mRNA is abundant in the neurostriatum, where at least 95% of the neuronal population corresponds to medium spiny neurons of GABAergic nature, in turn divided into two populations that send their axons to the substantia nigra pars reticulata (direct route) or globus pallidus (indirect route)²⁶. One of the highest expressions of H_3R is also observed in the neostriatum¹⁴ and, in the medium spiny neurons, the receptor modulates dopamine effects both at the somatic level¹⁶⁻¹⁹ and in synaptic terminals, where it inhibits GABA release⁵⁵. Consequently, it is of interest to determine if both populations express both H_3R isoforms or if these are segregated in neuronal populations, as observed for dopamine receptors, whose D_1 and D_2 receptors are expressed predominantly in striatonigral and striatopallidal neurons, respectively²⁶.

Drutel et al.²⁸ showed that two short isoforms of the rat (hH₃R₄₁₃ and hH₃R₃₉₇) show higher potency to inhibit cAMP formation, whereas the 445 aa isoform is more potent to induce MAPK pathway activation, which, together with hH_3R_{445} strong expression in the hippocampus, suggests that histamine participation in learning and memory processes would be mediated by the latter receptor. On the other hand, the 413 aa isoform in the rat is predominantly expressed at the dorsal raphe nucleus and in the locus coeruleus, suggesting that this isoform is responsible for serotonin and noradrenalin release inhibition, whereas isoforms hH_3R_{445} strong expression in granular cells and hH_3R_{397} in Purkinje cells of the rat would indicate differential participation of both these isoforms in cerebellum motor functions regulation.

In summary, available information suggests that in humans and in the rat, two isoforms with a lower number of amino acids in region i3 (hH_3R_{365} and hH_3R_{413} , respectively) might preferably express in histaminergic neurons and, consequently, be responsible for the triggering frequency modulation and for the synthesis and release of histamine itself. Conversely, the 445 aa isoform function appears to be more generalized and its effects would include modulation of the cortex \rightarrow basal ganglia \rightarrow thalamus \rightarrow cortex motor circuit, as well as of affective behaviors through regulation of the limbic system.

Of the 20 hH₃R isoforms identified to date, 12 might be non-functional, since they lack critical regions for agonist binding and/or signaling. However, in the rat, three 497, 465 and 449 aa isoforms (rH₃R_D, rH₃R_E and rH₃R_F), which lack the TM7 region (necessary for agonist binding)⁵⁶⁻⁵⁹ and which also possess a 105 aa extracellular carboxyl extreme, without homology with the carboxyl domain of the 7-TM variants (rH₃R_A, rH₃R_B and rH₃R_C, with 445, 413 and 397 aa, respectively), significantly reduce cell membrane expression of the 445 aa isoform (rH₃R_A) when co-expressed in COS-7 cells⁶⁰. Thus, one possibility is that co-expression of non-functional hH₃R isoforms regulates the expression and functionality of functional isoforms in the human CNS.

Conclusions

The control of the release of histamine itself and other neurotransmitters, particularly acetylcholine, dopamine, noradrenalin and serotonin, has led to consider the H₂R an important target for pharmacological approach to neurological disorders such as schizophrenia, cognitive disorders, migraine, Alzheimer and Parkinson diseases, Gilles de la Tourette syndrome and hyperactivity disorder with attention deficit^{9,26,61-69}. The presence of several hH₃R functional isoforms, with heterogeneity in their pharmacological and signaling characteristics, as well as with differential expression patterns on different brain areas, suggests a fine regulation of the CNS function by the histaminegic system. Further understanding of the pharmacological and functional behavior of hH2R isoforms will also enable the design of selective ligands for them and this way more specifically act on CNS alterations where the histaminergic system has been involved.

Acknowledgements

The research conducted at José Antonio Arias Maldonado's laboratory has been supported by the Centro de Investigación y de Estudios Avanzados (Cinvestav) and by the Consejo Nacional de Ciencia y Tecnología (Conacyt) of México (grant 220448). Ana Maricela García Gálvez is studying for a PhD in cellular and molecular neurobiology at Cinvestav, supported by Conacyt.

Conflict of interests

The authors declare not having any conflicts of interests.

References

- Yamashita M, Fukui H, Sugama K, et al. Expression cloning of a cDNA encoding the bovine histamine H₁ receptor. Proc Natl Acad Sci U S A. 1991;88(24):11515-9.
- Control Schäffer M, DelValle J, et al. Molecular cloning of a gene encoding the histamine H₂ receptor. Proc Natl Acad Sci U S A. 1991;88(13): 429-33.
- Lovenberg T, Roland B, Wilson S, et al. Cloning and functional expression of the human histamine H₃ receptor. Mol Pharmacol. 1999;55(6): 1101-7.
- Liu C, Ma XJ, Jiang X, et al. Cloning and pharmacological characterization of a fourth histamine receptor (H₄) expressed in bone marrow. Mol Pharmacol. 2001;59(3):420-6.
- Tiligada E, Kyriakidis K, Chazot P, Passani MB. Histamine pharmacology and new CNS drug targets. CNS Neurosci Ther. 2011;17(6): 620-8.
- Watanabe T, Taguchi Y, Shiosaka S, et al. Distribution of the histaminergic neuron system in the central nervous system of rats; a fluorescent immunohistochemical analysis with histidine decarboxylase as a marker. Brain Res. 1984;295(1):13-25.
- 7. Haas H, Sergeeva O, Selbach O. Histamine in the nervous system. Physiol Rev. 2008;88(3):1183-241.
- Arias-Montaño JA, Guerrero-Serna MG. Neuromodulación: una nueva función para la histamina. Rev Biomed. 1995;6:222-36.
- Panula P, Nuutinen S. The histaminergic network in the brain: basic organization and role in disease. Nat Rev Neurosci. 2013;14(7):472-87.
- Ramos-Jiménez J, Garduño-Torres B, Arias-Montaño JA. Histamina y comunicación intercelular: 99 años de historia. Rev Biomed. 2009;20: 100-26.

- Arrang JM, Garbarg M, Schwartz JC. Auto-inhibition of brain histamine release mediated by a novel class (H₃) of histamine receptor. Nature. 1983;302(5911):832-7.
- Arrang JM, Garbarg M, Lancelot JC, et al. Highly potent and selective ligands for histamine H_a receptors. Nature. 1987;327(6118):117-23.
- Aquino-Miranda G, Arias-Montaño JA. Neuromodulación e histamina: regulación de la liberación de neurotransmisores por receptores H₃. Salud Mental. 2012;35:345-54.
- Pillot C, Heron A, Cochois V, et al. A detailed mapping of the histamine H₃ receptor and its gene transcripts in rat brain. Neuroscience. 2002; 114(1):173-93.
- González-Sepúlveda M, Rosell S, Hoffmann H, et al. Cellular distribution of the histamine H₃ receptor in the basal ganglia: Functional modulation of dopamine and glutamate neurotransmission. Basal Ganglia. 2013;3: 109-21.
- Sánchez-Lemus E, Arias-Montaño JA. Histamine H₃ receptor activation inhibits dopamine D1 receptor-induced cAMP accumulation in rat striatal slices. Neurosci Lett. 2004;364(3):179-84.
- 17. Ferrada C, Ferré S, Casadó V, et al. Interactions between histamine H_3 and dopamine D_2 receptors and the implications for striatal function. Neuropharmacology. 2008;55(2):190-7.
- Ferrada C, Moreno E, Casadó V, et al. Marked changes in signal transduction upon heteromerization of dopamine D₁ and histamine H₃ receptors. Br J Pharmacol. 2009;157(1):64-75.
- Moreno E, Hoffmann H, Gonzalez-Sepúlveda M, et al. Dopamine D₁-histamine H₃ receptor heteromers provide a selective link to MAPK signaling in GABAergic neurons of the direct striatal pathway. J Biol Chem. 2011;286(7):5846-54.
- Mariottini C, Scartabelli T, Bongers G, et al. Activation of the histaminergic H₃ receptor induces phosphorylation of the Akt/GSK-3 β pathway in cultured cortical neurons and protects against neurotoxic insults. J Neurochem. 2009;110(5):1469-78.
- Oldham W, Hamm H. How do receptors activate G proteins? Adv Protein Chem. 2007;74:67-93.
- Wess J. G protein-coupled receptors: molecular mechanisms involved in receptor activation and selectivity of G protein recognition. FASEB J. 1997;11(5):346-54.
- Kuramasu A, Sukegawa J, Sato T, et al. The hydrophobic amino acids in putative helix 8 in carboxy-terminus of histamine H₂ receptor are involved in receptor-G-protein coupling. Cell Signal. 2011;23(11):1843-9.
- Leurs R, Bakker R, Timmerman H, de Esch I. The histamine H₃ receptor: from gene cloning to H₃ receptor drugs. Nat Rev Drug Discov. 2005;4(2): 107-20.
- 25. Bongers G, Sallmen T, Passani MB, et al. The Akt/GSK-3 β axis as a new signaling pathway of the histamine H₃ receptor. J Neurochem. 2007;103(1):248-58.
- Aquino-Miránda G, Molina-Hernández A, Arias-Montaño JA. [Regulation by histamine H₃ receptors of neurotransmitter release in the basal ganglia: implications for Parkinson's disease pathophysiology]. Gac Med Mex. 2012;148(5):467-75.
- Tardivel-Lacombe J, Rouleau A, Héron A, et al. Cloning and cerebral expression of the guinea pig histamine H₃ receptor: evidence for two isoforms. Neuroreport. 2000;11(4):755-9.
- Drutel G, Peitsaro N, Karlstedt K, et al. Identification of rat H₃ receptor isoforms with different brain expression and signaling properties. Mol Pharmacol. 2001;59(1):1-8.
- Rouleau A, Héron A, Cochois V, Pillot C, Schwartz JC, Arrang JM. Cloning and expression of the mouse histamine H₃ receptor: evidence for multiple isoforms. J Neurochem. 2004;90(6):1331-8.
- Bakker R. Histamine H₃ receptor isoforms. Inflamm Res. 2004;53(10): 509-16.
- Esbenshade TA, Strakhova M, Carr TL, et al. Differential CNS expression and functional activity of multiple human H₃ receptor isoforms. Inflamm Res. 2006; 55 Suppl 1:S38-9.
- Bongers G, Krueger K, Miller T, et al. An 80-amino acid deletion in the third intracellular loop of a naturally occurring human histamine H_a isoform confers pharmacological differences and constitutive activity. J Pharmacol Exp Ther. 2007;323(3):888-98.
- Strakhova MI, Fox GB, Carr TL, et al. Cloning and characterization of the monkey histamine H₃ receptor isoforms. Eur J Pharmacol. 2008;601(1-3):8-15.
- Morisset S, Sasse A, Gbahou F, et al. The rat H₃ receptor: gene organization and multiple isoforms. Biochem Biophys Res Commun. 2001; 280(1):75-80.
- Tardivel-Lacombe J, Morisset S, Gbahou F, Schwartz JC, Arrang JM. Chromosomal mapping and organization of the human histamine H₃ receptor gene. Neuroreport. 2001;12(2):321-4.
- Doyle G, Sheng R, Lin S, et al. Identification of five mouse μ-opioid receptor (MOR) gene (*Oprm1*) splice variants containing a newly identified alternatively spliced exon. Gene. 2007;395(1-2):98-107.
- Markovic D, Challiss RA. Alternative splicing of G protein-coupled receptors: physiology and pathophysiology. Cell Mol Life Sci. 2009; 66(20):3337-52.

Gaceta Médica de México. 2016;152

- Moyer R, Wang D, Papp A, et al. Intronic polymorphisms affecting alternative splicing of human dopamine D₂ receptor are associated with cocaine abuse. Neuropsychopharmacology. 2011;36(4):753-62.
- Wise H. The roles played by highly truncated splice variants of G protein-coupled receptors. J Mol Signal. 2012;7(1):13.
- Bongers G, Bakker R, Leurs R. Molecular aspects of the histamine H₃ receptor. Biochem Pharmacol. 2007;73(8):1195-204.
- Cogé F, Guénin SP, Audinot V, et al. Genomic organization and characterization of splice variants of the human histamine H₃ receptor. Biochem J. 2001;355(Pt 2):279-88.
- 200 P. Human histamine H₃ gene variant-3. Patent WO2001068816 A1. 2001.
 3. Nakamura T, Itadani H, Hidaka Y, Ohta M, Tanaka K. Molecular cloning
- Nakamura T, Itadani H, Hidaka Y, Ohta M, Tanaka K. Molecular cloning and characterization of a new human histamine receptor, hH₄R. Biochem Biophys Res Commun. 2000;279(2):615-20.
- Wiedemann P, Bönisch H, Oerters F, Brüss M. Structure of the human histamine H₃ receptor gene (HRH3) and identification of naturally occurring variations. J Neural Transm (Vienna). 2002;109(4):443-53.
- Wellendorph P, Goodman M, Burstein É, Nash N, Brann M, Weiner D. Molecular cloning and pharmacology of functionally distinct isoforms of the human histamine H₃ receptor. Neuropharmacology. 2002;42(7): 929-40.
- Gallagher M, Yates S. Histamine receptor H₃ polynucleotides. United States Patent. No. US 7,223,839 B2. 2007.
- Rouleau A, Ligneau X, Tardivel-Lacombe J, et al. Histamine H₃ receptor-mediated [³⁵S]GTP₇[S] binding: evidence for constitutive activity of the recombinant and native rat and human H₃ receptors. Br J Pharmacol. 2002;135(2):383-92.
- Arrang JM, Morisset S, Gbahou F. Constitutive activity of the histamine H_a receptor. Trends Pharmacol Sci. 2007;28(7):350-7.
- Morisset S, Rouleau A, Ligneau X, et al. High constitutiveactivity of native H₃ receptors regulates histamine neurons in brain. Nature. 2000; 408(6814):860-4.
- Moreno-Delgado D, Torrent A, Gómez-Ramírez J, de Esch I, Blanco I, Ortiz J. Constitutive activity of H₃ autoreceptors modulates histamine synthesis in rat brain through the cAMP/PKA pathway. Neuropharmacology. 2006;51(3):517-23.
- Stevens DR, Eriksson KS, Brown RE, Haas HL. The mechanism of spontaneousfiring in histamineneurons. Behav Brain Res. 2001;124(2): 105-12.
- Eriksson KS, Sergeeva OA, Selbach O, Haas HL. Orexin (hypocretin)/ dynorphin neurons control GABAergic inputs to tuberomammillary neurons. Eur J Neurosci. 2004;19(5):1278-84.
- Garduño-Torres B, Treviño M, Gutiérrez R, Arias-Montaño JA. Pre-synaptic histamine H₃ receptors regulate glutamate, but not GABA release in rat thalamus. Neuropharmacology. 2007;52(2):527-35.
- Gbahou F, Rouleau A, Arrang JM. The histamine autoreceptor is a short isoform of the H₃ receptor. Br J Pharmacol. 2012;166(6):1860-71.

- 55. Arias-Montaño JA, Floran B, Garcia M, Aceves J, Young JM. Histamine H₃ receptor-mediated inhibition of depolarization-induced, dopamine D₁ receptor-dependent release of [3H]-γ-aminobutyric acid from rat striatal slices. Br J Pharmacol. 2001;133(1):165-71.
- Leurs R, Smit M, Tensen C, TerLaak A, Timmerman H. Site-directed mutagenesis of the histamine H₁ receptor reveals a selective interaction of asparagine²⁰⁷ with subclasses of H₁ receptor agonists. Biochem Biophys Res Commun. 1994;201(1):295-301.
 Uveges A, Kowal D, Zhang Y, et al. The role of transmembrane helix 5
- Uveges A, Kowal D, Zhang Y, et al. The role of transmembrane helix 5 in agonist binding to the human H₃ receptor. J Pharmacol Exp Ther. 2002;301(2):451-8.
- Ishikawa M, Watanabe T, Kudo T, et al. Investigation of the histamine H₃ receptor binding site. Design and synthesis of hybrid agonists with a lipophilic side chain. J Med Chem. 2010;53(17):6445-56.
- Kim SK, Fristrup P, Abrol R, Goddard W III. Structure-based prediction of subtype selectivity of histamine H₃ receptor selective antagonists in clinical trials. J Chem Inf Model. 2011;51(12):3262-74.
- Bakker R, Lozada-Flores A, Van Marle A, Shenton F, et al. Discovery of naturally occurring splice variants of the rat histamine H₃ receptor that act as dominant-negative isoforms. Mol Pharmacol. 2006;69(4):1194-206.
- Esbenshade TĂ, Browman KE, Bitner RS, Strakhova M, Cowart MD, Brioni JD. The histamine H₃ receptor: an attractive target for the treatment of cognitive disorders. Br J Pharmacol. 2008;154(6):1166-81.
- Passani MB, Blandina P. Histamine receptors in the CNS as targets for therapeutic intervention. Trends Pharmacol Sci. 2011;32(4):242-9.
- Vohora D, Bhowmik M. Histamine H₃ receptor antagonists/inverse agonists on cognitive and motor processes: relevance to Alzheimer's disease, ADHD, schizophrenia, and drug abuse. Front Syst Neurosci. 2012;6:72.
- Berlin M, Boyce C, Ruiz M. Histamine H₃ receptor as a drug discovery target. J Med Chem. 2011;54:26-53.
- Gemkow M, Davenport A, Harich S, Ellenbroek B, Cesura A, Hallett D. The histamine H₃ receptor as a therapeutic drug target for CNS disorders. Drug Discov Today. 2009;14(9-10):509-15.
- Shan L, Bao AM, Swaab DF. The human histaminergic system in neuropsychiatric disorders. Trends Neurosci. 2015;38(3):167-77.
- Castellan Baldan L, Williams KA, Gallezot JD, et al. Histidine decarboxylase deficiency causes Tourette syndrome: parallel findings in humans and mice. Neuron. 2014;81(1):77-90.
- Millán-Guerrero RO, Baltazar-Rodríguez LM, Cárdenas-Rojas MI, et al. A280V polymorphism in the histamine H₃ receptor as a risk factor for migraine. Arch Med Res. 2011;42(1):44-7.
- Flores-Clemente C, Osorio-Espinoza A, Escamilla-Sánchez J, Leurs R, Arias JM, Arias-Montaño JA. A single-point mutation (Ala280Val) in the third intracellular loop alters the signalling properties of the human histamine H₃ receptor stably expressed in CHO-K1 cells. Br J Pharmacol. 2013;170(1):127-35.